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CPU DB:  
Recording  
Microprocessor  
History 

In Nov em ber 1971,  Intel introduced the world’s first 
single-chip microprocessor, the Intel 4004. It had 
2,300 transistors, ran at a clock speed of up to 740KHz, 
and delivered 60,000 instructions per second while 
dissipating 0.5 watts. The following four decades 
witnessed exponential growth in compute power, 

a trend that has enabled applications 
as diverse as climate modeling, pro-
tein folding, and computing real-time 
ballistic trajectories of angry birds. 
Today’s microprocessor chips employ 
billions of transistors, include multi-
ple processor cores on a single silicon 
die, run at clock speeds measured in 
gigahertz, and deliver more than four 
million times the performance of the 
original 4004. 

Where did these incredible gains 
come from? This article sheds some 
light on this question by introducing 
CPU DB (cpudb.stanford.edu), an open 
and extensible database collected by 
Stanford’s VLSI Research Group over 
several generations of processors (and 

students). We gathered information 
on commercial processors from 17 
manufacturers and placed it in CPU 
DB, which now contains data on 790 
processors spanning the past 40 years.

In addition, we provide a methodol-
ogy to separate the effect of technology 
scaling from improvements on other 
frontiers (for example, architecture 
and software), allowing the compari-
son of machines built in different tech-
nologies. To demonstrate the utility 
of this data and analysis, we use it to 
decompose processor improvements 
into contributions from the physical 
scaling of devices, and from improve-
ments in microarchitecture, compiler, 
and software technologies. 
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While information about current 
processors is easy to find, it is rarely 
arranged in a manner that is useful to 
the research community. For example, 
the data sheet may contain the proces-
sor’s power, voltage, frequency, and 
cache size, but not the pipeline depth 
or the technology minimum feature 
size. Even then, these specifications 
often fail to tell the full story: a lap-
top processor operates over a range of 
frequencies and voltages, not just the 
2GHz shown on the box label. 

Not surprisingly, specification data 
gets more difficult to find the older 
the processor becomes, especially 
for those that are no longer made, or 
worse, whose manufacturers no lon-
ger exist. We have been collecting this 
type of data for three decades and are 
now releasing it in the form of an open 
repository of processor specifications. 
The goal of CPU DB is to aggregate 
detailed processor specifications into 
a convenient form and to encourage 
community participation, both to le-
verage this information and to keep it 
accurate and current. CPU DB is popu-
lated with desktop, laptop, and server 
processors, for which we use SPEC13 as 
our performance-measuring tool. In 
addition, the database contains limit-
ed data on embedded cores, for which 
we are using the CoreMark bench-
mark for performance.5 With time and 
help from the community, we hope to 
extend the coverage of embedded pro-
cessors in the database. 

For users to analyze different pro-
cessor features, CPU DB contains many 
data entries for each CPU, ranging from 
physical parameters such as number 
of metal layers, to overall performance 
metrics such as SPEC scores. To make 
viewing relevant data easier, the data-
base includes summary fields, such as 
nominal clock frequency, that try to 
represent more detailed scaling data. 
Table 1 shows the current list of CPU 
DB parameters. Table 2 summarizes 
the “microarchitecture” specifications. 

All high-performance processors 
today tell the system what supply volt-
age they need within a range of allow-
able values. This makes it difficult to 
track how power-supply voltage has 
scaled over time. Instead of relying 
on the specified worst-case behavior, 
researchers are free to analyze the 
power, frequency, and voltage that a 

Figure 1. The diamonds indicate how processor performance actually scaled with time, 
while the squares denote how much speedup came from improving the manufacturing 
process.
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Figure 2. Pollack’s rule using CPU DB: performance vs. transistor count. The regression 
yields Perfnorm = ntrans

0.37.
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Table 1. Categories used to organize per-processor specifications in CPU DB.

Category

Processor architecture  
and microarchitecture 

Memory system Physical  
characteristics 

Technology 

Summary Parameter 

Architecture family Last level cache Vdd nominal  
Clock frequency  
TDP 

Process size 

Parameters

Manufacturer L1 data size Vdd high Process name 

Family name L1 instruction size Vdd low Process type 

Code name L2 size Nominal frequency Feature size 

Model name L3 size Turbo frequency Effective channel length

Date released Memory bandwidth Low power frequency Number of metal layers

Number of cores FSB pins TDP Metal type FO4 delay

Threads per core Memory pins Die size 

Word size Power and ground pins I/O pins Number of transistors 
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processor actually uses while running 
an application, and then add it to the 
CPU DB repository. Table 3 is a sum-
mary of the measured parameters 
tracked in CPU DB. 

While CPU DB includes a large set of 
processor data fields, certain members 
of the architecture community will 
likely want to explore data fields that 
we did not think to include. To handle 
such situations, users are encouraged 
to suggest new data columns. These 
suggestions will be reviewed and then 
entered in the database. 

A similar system helps keep CPU 
DB accurate and up to date. Users can 
submit data for new processors and 
architectures, and suggest corrections 
to data entries. We understand that 
users may not have data for all of the 
specifications, and we encourage us-
ers to submit any subsets of the data 
fields. New data and corrections will 
be reviewed before being applied to 
the database. 

With these mechanisms for adding 
and vetting data, CPU DB will be a pow-
erful tool for architects who wish to 
incorporate processor data into their 
studies. Because many database users 
will probably want to perform analyses 
on the raw CPU DB data, the full data-
base is downloadable in comma-sepa-
rated value format. 

Technology Normalization 
Methodology
CPU DB allows side-by-side access to 
performance data for relatively simple 
in-order processors (up to the mid-
1990s) and modern out-of-order pro-
cessors. One could ask if, at the cost 
of lower performance, the simplic-
ity of the older designs conferred an 
efficiency advantage. Unfortunately, 
direct comparisons using the raw data 
are difficult because, over the years, 
manufacturing technologies have im-
proved significantly. A fair comparison 
would be possible if both processors 
were manufactured using the same 
process; but since porting all of these 
older processors to modern technolo-
gies is not feasible, we need another 
approach. To enable such compari-
sons, we instead estimate how pro-
cessor performance and power would 
scale with technology.

Our main performance metric is 
based on industry-standard SPEC 

CPU2006 scores.13 Unfortunately, most 
older processors did not run SPEC 2006 
and instead measured performance in 
MIPS (million instructions per second) 
and, later, in terms of SPEC 1989, SPEC 
1992, SPEC 1995, and SPEC 2000. In 
those cases we estimate SPEC 2006 
numbers by converting old scores into 
a SPEC 2006 equivalent score using a 
conversion factor. The conversion val-
ues are determined by examining sys-

tems that have scores for two versions 
of SPEC and then taking the geometric 
mean of the set of ratios between over-
lapping scores. This method was used 
to create the summary performance 
scores in the database. We also provide 
the raw scores so that users can develop 
better conversion methods over time.

To estimate the performance of a 
processor if it were manufactured us-
ing a newer process, we calculate the 

Figure 3. Pollack’s rule using CPU DB: performance vs. normalized area. The regression 
yields Perfnorm = ntrans

0.46.
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Table 2. Microarchitectural parameters contained in CPU DB.

Manufacturer Microarchitecture Revision ISA 

ISA version ISA extensions Floating point pipe 
stages

Integer pipe stages

Max uOps  
issued per cycle 

Integer  
functional units

Load store  
functional units

Floating point  
functional units

Total functional 
units

Max instructions  
decoded per cycle

Reorder buffer Instruction window size

Instruction fetch  
queue size

Branch history  
table

Branch target  
buffer

Branch predictor  
accuracy

Integer registers Floating point registers Total registers Floating point coproc.

TLB entries Out of order Integrated mem. 
controller 

Table 3. Measured parameters in CPU DB. Note that spec benchmarks also include  
comprehensive fields for performance on individual SPEC subtests.

Power Voltage Performance 

Power for specified load 
Idle power 
Max operating power 

Vdd for specified load 
Vdd idle 
Vdd at max power 

SPECRATE 2006  
SPEC 2006  
SPEC 2000  
SPEC 1995 
SPEC 1992
MIPs
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clock frequency in that technology us-
ing gate-delay data. While the speed 
of the cache memory on the processor 
scales with technology, the delay go-
ing to main memory has scaled only 
slowly with time. As a result, doubling 
the clock frequency generally does not 
double the processor’s performance. 
We finesse this issue the same way 
the microprocessor industry does: by 
scaling the on-chip cache so the per-
centage memory stall time remains 
constant. Using the empirical rule 
that miss rates are proportional to 
the square root of the cache size,9,14 

we expand the last-level cache by four 
times for each doubling of clock fre-
quency. Thus, we assume that the pro-
cessor performance scales with clock 
frequency, but we penalize the energy 
and area of the processor by growing 
its cache. 

For the clock-cycle time estimate, 
we need to know how the delays of 
the gates and wires will scale. Fortu-
nately, the delay scaling of different 
logic gates is similar, so it is sufficient 
to measure how the delay of a single 
gate scales. Our analysis uses the delay 
of an inverter driving four equivalent 

inverters (a fanout of four, or FO4) as 
the gate-speed metric. Inverters are 
the most common gate type, and their 
delay is often published in technology 
papers. For wire delay it is important 
to remember that a design’s area will 
shrink with scaling, so its wire delay 
will, in general, reduce slowly or, at 
worst, stay constant. Its effect on cycle 
time depends on the internal circuit 
design. Designers generally pipeline 
long wires, so they tend not to limit the 
critical path. Thus, we ignore wire de-
lay and make the slightly optimistic as-
sumption that a processor’s frequency 
in the new technology will be greater 
by the ratio of FO4s from old to new: 

f2 = f1
FO41

FO42

Using FO4 as a basic metric has an 
additional advantage: it cleanly cov-
ers the performance/energy variation 
that comes from changing the supply 
voltage. Two processors, even built in 
the same technology, might be oper-
ated at different supply voltages. The 
energy difference between the two can 
be calculated directly from the supply 
voltage, but the voltage’s effect on per-
formance is harder to estimate. Using 
FO4 data for these designs at two dif-
ferent voltages provides all the infor-
mation that is needed. 

Having accounted for the effect of 
the scaled memory systems, we find 
that estimating the power of a pro-
cessor with scaled technology is fairly 
straightforward. Processor power has 
two components: dynamic and leak-
age. In an optimized design, the leak-
age power is around 30% of the dynam-
ic power, and the leakage power will 
scale as the dynamic power scales.16 

Dynamic power is given by the prod-
uct of the processor’s average activity 
factor, α (the probability that a node 
will switch each cycle), the processor 
frequency, and the energy to switch the 
transistors: 

Energy = C{Vdd}2

The processor’s average activity fac-
tor depends on the logic and not the 
technology, so it is constant with scal-
ing. Since capacitance per unit length 
is roughly constant with scaling, C 
should be proportional to the feature 
size λ. We have already estimated how 

Figure 4. Scaling of transistor feature sizes over time. Up to the 130nm node, feature  
size scaled every two to three years. Since the 90nm generation, feature size scaling  
has accelerated to every two years. 
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Figure 5. In modern chips, the number of features per transistor has started to grow.
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the frequency will scale, so the esti-
mated power and performance scaling 
for technology is: 

P2 = P1
λ2V 2

dd2FO41

λ1V 2
dd1 FO42

 + Pcache

 

Perf2 = Perf1 

FO41  

FO42

  

For analyzing processor efficiency, 
it is often better to look at energy per 
operation rather than power. Energy/
op factors out the linear relationship 
that both performance and power have 
with frequency (FO4). Lowering the fre-
quency changes the power but does not 
change the energy/op. Since energy/op 
is proportional to the ratio of power to 
performance, we derive equation 3 by 
dividing equations 1 and 2: 

energy
op

 ∝ P1

Perf1

 λ2V 2
dd2

λ1V 2
dd1

 + Pcache

Perf1
 

FO42

FO41

With these expressions, it is pos-
sible to normalize CPU DB proces-
sors’ performance and energy into a 
single process technology. While In-
tel’s Shekhar Borkar et al. gave a rough 
sketch of how technology scaling and 
architectural improvement contrib-
uted to processor performance over 
the years,2 our data and normalization 
method can be used to generate an 
actual scatter plot showing the break-
down between the two factors: faster 
transistors (resulting from technology 
scaling) and architectural improve-
ment. As seen in Figure 1, process 
scaling and microarchitectural scal-
ing each contribute nearly the same 
amount to processor performance 
gains. 

As a quick sanity check for our nor-
malization results, we plot normalized 
performance versus transistor count 
and normalized area in figures 2 and 3. 
These plots look at Pollack’s rule, which 
states that performance scales as the 
square root of design complexity.1 Pol-
lack’s rule has been used in numerous 
published studies to compare perfor-
mance against processor die resource 
usage.2,4,10,15 Figures 2 and 3 show that 
our normalized data is in close agree-
ment with Pollack’s rule, suggesting 
our normalization method accurately 
represents design performance.

Physical Scaling
One of the nice side benefits of collect-
ing this database is that it allows one to 

see how chip complexity, voltage, and 
power have scaled over time, and how 
well scaling predictions compare with 
reality. The rate of feature scaling has 
accelerated in recent years (Figure 4). 
Up through the 130nm (nanometer) 
process generation, feature size scaled 
down by a factor of 

α = 1
2

approximately every two to three years. 
Since the 90nm generation, however, 
a new process has been introduced 
approximately every two years. In-
tel appears to be driving this intense 
schedule and has been one of the first 
to market for each process since the 
180nm generation. 

As a result of this exponential scal-
ing, in the 25 years since the release 
of the Intel 80386, transistor area has 

shrunk by a factor of almost 4,000. If 
feature size scaling were all that were 
driving processor density, then tran-
sistor counts would have scaled by the 
same rate. An analysis of commercial 
microprocessors, however, shows that 
transistor count has actually grown by 
a factor of 16,000. 

One simple reason why transistor 
growth has outpaced feature size is 
that processor dies have grown. While 
the 80386 microprocessor had a die 
size of 103 mm2, modern Intel Core 
i7 dies have an area of up to 296 mm2. 
This is not the whole story behind tran-
sistor scaling, however. Figure 5 shows 
technology-independent transistor 
density by plotting how many square 
minimum features an average proces-
sor transistor occupies. We generated 
this data by taking the die area, divid-

Figure 6. Voltage vs. feature size. It is clear that voltage scaling did not follow one simple 
rule. First, by convention, it was maintained at 5 volts. Once voltage reductions were re-
quired, a new convention was established at 3.3 volts. Then voltage was reduced in propor-
tion to feature size until the 130nm node. Log-space regression reveals that voltage scaled 
roughly as the square root of feature size between the 0.6um and 130nm nodes.
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Figure 7. Processor frequency scaling with time. As illustrated, processor frequency has 
largely leveled off since 2005.  
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ing by the feature size squared, and 
then dividing by the number of tran-
sistors. From 1985 to 2005 increasing 
metal layers and larger cache struc-
tures (with their high transistor den-
sities) had decreased the average size 
of a transistor by four times. Interest-
ingly, since 2005, transistor density 
actually dropped by roughly a factor of 
two. While our data does not indicate 
a reason for this change, we suspect it 
results from a combination of stricter 
design rules for sub-wavelength lithog-
raphy, using more robust logic styles 
in the processor, and a shrinking per-
centage of the processor area used for 
cache in chip multiprocessors. 

Our data also provides some inter-
esting insight into how supply voltag-
es have scaled over time. Most people 

know voltage scales with technology 
feature size, so many assume that this 
scaling is proportional to feature size 
as originally proposed in Robert Den-
nard’s 1974 article.6 As he and others 
have noted, however, and as shown 
in Figure 6, voltage has not scaled at 
the same pace as feature size.3,12 Until 
roughly the 0.6 µm node, processors 
maintained an operating voltage of 5 
volts, since that was the common sup-
ply voltage for popular logic families 
of the day, and processor power dis-
sipation was not an issue. It was not 
until manufacturers went to 3.3 volts 
in the 0.6 µm generation that voltage 
began to scale with feature size. Fit-
ting a curve on the voltage data from 
the half-micron to the 0.13 µm pro-
cess generations, our data indicates 

that, even when voltage scaled, it did 
so with roughly the square root of fea-
ture size. This slower scaling has been 
attributed to reaping a dual benefit 
of faster gates and better immunity 
to noise and process variations at the 
cost of higher chip-power density. 

From the 0.13 µm generation on, 
voltage scaling seems to have slowed. 
At the same time, however, trends in 
voltage have become much more dif-
ficult to estimate from our data. As 
mentioned earlier, today almost all 
processors define their own operat-
ing voltage. The data sheets have only 
the operating range. Figure 6 plots the 
maximum specified voltage. More user 
data should provide insight on how 
supply voltages are really scaling. 

Circuits and Pipelining
Circuit designers and microarchitects 
were not content to scale frequency 
with gate speed—if they had been, then 
microprocessors would be running at 
only around 500MHz today. As Figure 7 
shows, frequencies scaled much faster 
than simple gate speed. The reason for 
this discrepancy is largely because of 
architectural decisions that decreased 
the logic depth in each processor pipe-
line stage and increased the number of 
stages. From 1985 to around 2000, the 
frequency rapidly increased as a result 
of faster, more parallel circuit imple-
mentations of adders, branch units, 
and caches, and the use of aggressive 
pipelining. These trends are evident 
in the contrast between the two-stage 
fetch/execute pipeline of the Intel 
80386, and the 30-plus pipeline stages 
in the Prescott Pentium IV. 

Since 2000, processor frequencies 
have stagnated, but this is not the 
whole story. Our data confirms that 
gate speeds have continued to improve 
with technology. What is different now, 
though, is that the industry has moved 
away from deeply pipelined machines 
and is now designing machines that do 
more work per pipeline stage. The rea-
son for this change is simple: power. 
While short-tick machines are possible 
and might be optimal from a perfor-
mance perspective,7,11,14 they are not 
energy efficient.8 

In light of slower voltage scaling and 
faster frequency scaling, it comes as 
no surprise that processor power has 
increased over time. As illustrated in 

Figure 8. Power density over time. From 1985 through 2005, power density grew by  
roughly a factor of 32. Since 2005, power density has largely started to decrease. 
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Figure 8, processor power density has 
increased by more than a factor of 32 
from the release of the 80386 through 
2005, although it has recently started 
to decrease as energy-efficient comput-
ing has grown in importance. 

Interestingly, scaling rules say 
power should be much worse. From 
the Intel 80386 to a Pentium 4, feature 
size scaled by 16 times, supply volt-
age scaled by around four times, and 
frequency scaled by 200 times. This 
means that the power density should 
have increased by a factor of 16 · 200/42 
= 200, which is much larger than the 
power density increase of 32 times 
shown in Figure 8. Figure 9 compares 
observed power with how power should 
have scaled if we just scaled up an Intel 
386 architecture to match the perfor-
mance of new processors. The eight-
fold savings represents circuit and mi-
croarchitectural optimizations—such 
as clock gating—that have been done 
during this period to keep power under 
control. The energy savings of these 
techniques had initially been grow-
ing, but, unfortunately, recently seems 
to have stabilized at around the eight-
fold mark. This is not a good sign if we 
hope to continue to scale performance, 
since technology scaling of energy is 
slowing down.

Microarchitecture and Software
While process technologists were 
finding ways to scale transistors, pro-
cessor architects were working equally 
hard in advancing and innovating at the 
microarchitecture level. Indeed, this 
effect can be seen in CPU DB where, 
after normalizing for technology, we 
observe a hundredfold improvement 
in microarchitecture/software perfor-
mance since the Intel 80386 days. His-
torically, as the number of transistors 
per chip increased with technology 
scaling, architects found ways to use 
those transistors to create faster, more 
advanced uniprocessors. In addition 
to aggressive clock scaling, architects 
implemented features such as specula-
tive execution, parallel instruction is-
sue, out-of-order processing, and larger 
caches—all of which contributed to im-
proved single-threaded performance. 

By approximately 2005, increas-
ingly complex processors, along with 
slowed voltage scaling, caused proces-
sors to hit a new constraint: the power 

wall. This resulted in a significant shift 
in the industry. Moore’s Law meant 
that processor designers could still 
expect an ever-increasing number of 
transistors, but they had to use these 
transistors in energy-efficient ways; 
increasing performance now meant 
decreasing energy/instruction to keep 
power constant. As a response to this 
challenge, the industry transitioned 
toward CMP (chip multiprocessor) de-
signs that use many simple processors 
to increase the aggregate performance 
of the chip. 

Figure 10 plots the technology-nor-
malized energy/op versus the normal-
ized performance. For this plot, we 
assume the power needed to scale up 

the cache size is small compared with 
the processor power, providing an op-
timistic assumption of the efficiency 
of these early machines. This plot indi-
cates that, for early processor designs, 
energy/op remains relatively constant 
while performance scales up. 

We noticed from this plot, howev-
er, that some of the early processors 
(for example, the Pentium) appear 
far more energy efficient than mod-
ern processor designs. To estimate 
the scaled energy of these processors 
more fairly, we scale the caches by the 
square of the improvement in frequen-
cy to keep the memory stall percentage 
constant, and we estimate the power 
of a 45nm low-power SRAM at around 

Figure 10. Energy/op vs. performance. Note these energy/ops do not reflect any scaling of 
the on-chip memory system. 
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Figure 11. Energy/op vs. performance, modified to scale up the memory system of older 
cores. 
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0.5W/MB. Including this cache energy-
correction factor yields the results in 
Figure 11. Comparing these two plots 
demonstrates how critical the memory 
system is for low-energy processors. 
The leakage power of our estimated 
large on-chip cache increases the en-
ergy cost of an instruction by four to 
eight times for simple processors. 

Surprisingly, however, the original 
Pentium designs are still substantially 
more energy efficient than other de-
signs in the plot. Clearly, more analysis 
is warranted to understand whether 
this apparent efficiency can be lever-
aged in future machines. 

In recent years, desktop processors 
have shifted toward high-throughput 
parallel machines. With this shift, it 
was unclear whether processor de-
signers would be able to scale single-
core performance. A brief analysis 
of the data in Figure 12 shows that 
single-core performance continues 
to scale with each new architecture. 
Within an architecture, performance 
depends largely on the part’s frequen-
cy and cache size. Figure 13 illustrates 
this point by plotting the performance 
versus frequency and cache size for 
several modern processor designs. 
Frequency scaling with each new ar-
chitecture is slower than before, and 
peak frequencies are now often used 
only when the other processor cores 
are idle. Figure 14 plots cycle time 
measured in gate delays and shows 
why processor clock frequency seems 
to have stalled: processors moved to 
shorter pipelines, and the resulting 
slower frequency has taken some time 
to catch up to the older hyperpipe-
lined rates. 

More interesting is that even when 
controlling for the effects of frequency 
and cache size, single-core microarchi-
tectural performance is still being im-
proved with each generation of chips 
(Figure 13). Improvements such as 
on-chip memory controllers and extra 
execution units all play a role in deter-
mining overall system efficiency, and 
architects are still finding improve-
ments to make. 

Our results, however, come with 
the caveat that some portion of the 
performance improvement in modern 
single-core performance comes from 
compiler optimizations. Figure 15 
shows how performance of the SPEC 

Figure 12. Performance vs. year since 2005.  
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Figure 13. Performance vs. clock rate and cache size since 2005 (LLC is the last level cache 
size). 
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Figure 14. FO4 delays per cycle for processor designs. FO4 delay per cycle is roughly  
proportional to the amount of computation completed per cycle. 
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have led to performance boosts in Libquantum. 
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Even when 
controlling for the 
effects of frequency 
and cache size, 
single-core 
microarchitectural 
performance is still 
being improved  
with each 
generation of chips.

2006 benchmark Libquantum scales 
over time on the Intel Bloomfield ar-
chitecture. Libquantum concentrates 
a large amount of computation in an 
inner for loop that can be optimized. 
As a result, Libquantum scores have 
risen 18 times without any improve-
ment to the underlying hardware. Also, 
many SPEC scores for modern proces-
sors are measured with the Auto Paral-
lel flag turned on, indicating that the 
measured “single-core” performance 
might still be benefiting from multi-
core computing. 

Conclusion
Over the past 40 years, VLSI design-
ers have used an incredible amount 
of engineering expertise to create and 
improve these amazing devices we call 
microprocessors. As a result, perfor-
mance has improved and the energy/
op has decreased by many orders of 
magnitude, making these devices the 
engines that power our information 
technology infrastructure. CPU DB is 
designed to help explore this area. Us-
ing the data in CPU DB and some sim-
ple scaling rules, we have conducted 
some preliminary studies to show the 
kinds of analyses that are possible. We 
encourage readers to explore and con-
tribute to the processor data in CPU 
DB, and we look forward to learning 
more about processors from the in-
sights they develop.
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